Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444171

RESUMO

Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼ 32 ‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically-relevant and climate change-related questions remain. First, does sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32 ‰, moderate hyposalinity: 22 ‰, severe hyposalinity: 16 ‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 hours after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.

2.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326213

RESUMO

Climate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function. We exposed green sea urchins (Strongylocentrotus droebachiensis) to salinities ranging from ambient (32‰) to severe (14‰) and assessed tube feet coordination (righting response, locomotion) and adhesion [disc tenacity (force per unit area)]. Righting response, locomotion and disc tenacity decreased in response to hyposalinity. Severe reductions in coordinated tube foot activities occurred at higher salinities than those that affected adhesion. The results of this study suggest moderate hyposalinities (24-28‰) have little effect on S. droebachiensis dislodgement risk and survival post-dislodgment, while severe hyposalinity (below 24‰) likely reduces movement and prevents recovery from dislodgment.


Assuntos
Adesivos , Ouriços-do-Mar , Animais , Herbivoria , Locomoção
3.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044457

RESUMO

Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high-energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion and quiescent conditions on the regeneration process of tube foot morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than that of tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube foot length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and non-amputated treatments increased in all cases when compared with pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest a role of active plasticity of tube foot functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.


Assuntos
Hidrodinâmica , Ouriços-do-Mar , Adesivos , Animais , Ouriços-do-Mar/fisiologia
4.
J Exp Biol ; 223(Pt 15)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32587066

RESUMO

Sea urchins native to the nearshore open coast experience periods of high, repeated wave forces that can result in dislodgement. To remain attached while clinging and locomoting across rocky substrates, sea urchins use adhesive tube feet. Purple sea urchins (Strongylocentrotus purpuratus) adhere to a variety of rock substrates (e.g. sandstone, mudstone, granite), and display morphological plasticity (skeletal morphology) to native substrate. We tested the hypothesis that their adhesive system is also plastic and varies as a function of native population and substrate. The results of our study support our hypothesis. Sea urchins from sandstone adhere less strongly to most substrates than those native to mudstone and granite rock. Sandstone produced the lowest whole animal adhesive force values across all populations, suggesting that this rock type is particularly challenging for sea urchins to adhere to. The number of adhesive tube feet that failed during experimental trials and the area used by sea urchins to attach, matches closely with whole animal adhesive force values: higher forces resulted in more tube foot failure and larger attachment area. On artificial substrates (glass and Plexiglass), differences in adhesion among populations was consistent with differences in adhesion on rock substrates except on glass, where sea urchins native to sandstone adhered more strongly to glass than any other substrate tested. To our knowledge, this study is the first to describe population-level plasticity in a biological adhesive system related to native substrate, and has significant implications for sea urchin ecology, behavior and functional morphology.


Assuntos
Strongylocentrotus purpuratus , Adesivos , Animais , Ouriços-do-Mar
5.
PLoS One ; 13(2): e0191278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466357

RESUMO

Sea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these "pits." However, there are no experimental data demonstrating they bore pits. If they do, what are the rates and consequences of bioerosion to nearshore systems? We sampled purple sea urchins, Strongylocentrotus purpuratus, from sites with four rock types, three sedimentary (two sandstones and one mudstone) and one metamorphic (granite). A year-long experiment showed urchins excavated depressions on sedimentary rocks in just months. The rate of pit formation varied with rock type and ranged from <5 yr for medium-grain sandstone to >100 yr for granite. In the field, there were differences in pit size and shapes of the urchins (height:diameter ratio). The pits were shallow and urchins flatter at the granite site, and the pits were deeper and urchins taller at the sedimentary sites. Although overall pit sizes were larger on mudstone than on sandstone, urchin size accounted for this difference. A second, short-term experiment, showed the primary mechanism for bioerosion was ingestion of the substratum. This experiment eliminated potential confounding factors of the year-long experiment and yielded higher bioerosion rates. Given the high densities of urchins, large amounts of rock can be converted to sediment over short time periods. Urchins on sandstone can excavate as much as 11.4 kg m-2 yr-1. On a broader geographic scale, sediment production can exceed 100 t ha-1 yr-1, and across their range, their combined bioerosion is comparable to the sediment load of many rivers. The phase shift between urchin barrens and kelp bed habitats in the North Pacific is controlled by the trophic cascade of sea otters. By limiting urchin populations, these apex predators also may indirectly control a substantial component of coastal rates of bioerosion.


Assuntos
Strongylocentrotus purpuratus/fisiologia , Animais , California , Clima , Ecossistema , Comportamento Alimentar , Sedimentos Geológicos , Fenômenos Geológicos , Modelos Biológicos , Strongylocentrotus purpuratus/crescimento & desenvolvimento
6.
Adv Mar Biol ; 66: 171-212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24182901

RESUMO

Although Echinodermata is one of the only stenohaline phyla in the animal kingdom, several species show remarkable abilities to acclimate and survive in euryhaline habitats. The last comprehensive review of this topic was over 25 years ago and much work has been published since. These recent studies expand the field reports of species living in hyposaline environments and detail experimental research on the responses, physiological range, and limits of echinoderms to salinity challenges. I provide a brief review of the historical concepts and measures of salinity and relate this overview to the physiological and ecological studies on echinoderms. Many marine biologists are not aware that chemical oceanographers advocate abandoning today's commonly used measure of salinity, 'PSU', in favour of absolute salinity (SA)-a return to the ppt (‰) metric. The literature survey reveals only one euryhaline-tolerant species in the Southern Hemisphere (there are 42 in the North) and more euryhaline species in the geologically older, brackish seas. The green sea urchin, Strongylocentrotus droebachiensis, is one of the most tolerant echinoids to hyposalinity. Different source populations have varying levels of acclimation and tolerance to hyposalinity. Experiments show that green urchins previously unexposed to hyposalinity experience a clear decrease in growth rates; however, this adverse effect is short lived. Green urchins already acclimated to hyposalinity can endure intense and repeated bouts and grow at the same rate of urchins not exposed. Promising future work on the physiological and cellular mechanisms of hyposalinity acclimation includes comparative studies of the role of heat shock proteins in the response to changing salinities.


Assuntos
Equinodermos/fisiologia , Ecossistema , Oceanos e Mares , Salinidade , Água do Mar/química , Aclimatação , Animais , Aquicultura , Demografia , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...